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Abstract. Iterative rounding has enjoyed tremendous success in ele-
gantly resolving open questions regarding the approximability of prob-
lems dominated by covering constraints. Although iterative rounding
methods have been applied to packing problems, no single method has
emerged that matches the effectiveness and simplicity afforded by the
covering case. We offer a simple iterative packing technique that retains
features of Jain’s seminal approach, including the property that the mag-
nitude of the fractional value of the element rounded during each itera-
tion has a direct impact on the approximation guarantee. We apply itera-
tive packing to generalized matching problems including demand match-
ing and k-column-sparse column-restricted packing (k-CS-PIP) and ob-
tain approximation algorithms that essentially settle the integrality gap
for these problems. We present a simple deterministic 2k-approximation
for k-CS-PIP, where an 8k-approximation was the best deterministic al-
gorithm previously known. The integrality gap in this case is at least
2(k − 1 + 1/k). We also give a deterministic 3-approximation for a gen-
eralization of demand matching, settling its natural integrality gap.

1 Introduction

The (maximum weight) matching problem is cornerstone combinatorial opti-
mization problem that has been studied for over 40 years. The problem is suc-
cinctly stated as seeking a maximum weight collection of non-intersecting edges
in a weighted graph. Matching problems have enjoyed continual interest over
the years and have been generalized in several orthogonal directions. The k-
hypergraph matching problem, which is also known as k-set packing, seeks a
maximum weight collection of non-intersecting hyperedges in a weighted hyper-
graph, with the additional restriction that each hyperedge contain at most k
vertices. Thus 2-hypergraph matching is precisely the matching problem. While
matching is in P, k-hypergraph matching is NP-complete for k > 2.

Another direction in which matching has recently been generalized is through
the augmentation of demands. The demand matching problem, introduced by
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Shepherd and Vetta [15], is defined on a weighted graph G that possesses a
demand, de ∈ ZZ+ for each edge e, and a capacity bv ∈ ZZ+ for each vertex
v. We seek a maximum weight collection of edges M such that for any ver-
tex v, the sum of the demands of the edges in M incident upon v is at most
bv (i.e.

∑
e∈M∩δ(v) de ≤ bv). Demand matching is a common generalization of

the matching and knapsack problems: If de = bv = 1 for all e and v, we re-
cover matching, and by taking G to be a star we may model knapsack. Demand
matching is MAXSNP-complete, even in the uniform weight case [15]. Demands
are a powerful feature that allow for richer modeling; however, in general the
demand version of combinatorial optimization problem can be significantly more
difficult to approximate than its unit demand counterpart [6, 5].

Problem definition. We consider the k-hypergraph demand matching (k-HDM)
problem, which is the natural common generalization of k-hypergraph matching
and demand matching. More formally, given a weighted hypergraph H = (V, E)
endowed with a demand dS ∈ ZZ+ for each (hyper)edge S ∈ E and a capac-
ity bv ∈ ZZ+ for v ∈ V , the problem may be defined by the following integer
program (k-HDM):

Maximize
∑
S∈E

cSxS

subject to
∑
S|v∈S

dSxS ≤ bv ∀v ∈ V

xS ∈ {0, 1} ∀S ∈ E ,

where |S| ≤ k for each edge S ∈ E . Note the latter restriction yields a constraint
matrix with at most k nonzeros per column. This problem is also known as the k-
column-sparse column-restricted packing integer program (k-CS-CPIP) problem.
It is a specialization of the k-column-sparse packing integer program (k-CS-PIP)
problem, in which we allow each S ∈ E to have different demand values dSv at
each vertex v.

We make the assumption that for each edge S, dS ≤ bv for all v ∈ S. This
so-called no-clipping assumption is easy to satisfy by deleting edges that violate
it; however, this assumption is necessary in order for the natural LP relaxation
to have a bounded integrality gap. We note that the restriction that xS ∈ {0, 1}
is for the sake of exposition and that our results may be extended to apply to
multiple copies of edges.

Results. Singh and Lau [16] were the first to extend Jain’s celebrated iterative
rounding technique [9] to address packing constraints. Their approach obtains
an approximate solution that marginally violates the packing constraints by
iteratively removing packing constraints involving only a small number of vari-
ables. They were able to apply this elegant idea to resolve an open question
concerning minimum cost degree-bounded spanning trees. More recently, Chan
and Lau [4] employed an interesting combination of an iterative approach and
the fractional local ratio method [2] to give the first approximation algorithm
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for the k-hypergraph matching problem that matched the integrality gap of the
natural LP formulation, which had previousy been established as k−1+1/k [7].

Our main insight, which differentiates our approach from previous ones, is to
iteratively maintain a sparse approximate convex decomposition of the current
fractional solution. This affords us a simple pseudo-greedy technique called iter-
ative packing that yields improved approximation algorithms for k-HDM (k-CS-
CPIP) and special cases that essentially settle the integrality gap of the natural
LP formulations. For instance, iterative packing is able to establish an integral-
ity gap of k− 1 + 1/k for not just k-hypergraph matching but for k-hypergraph
b-matching as well.

Akin to Jain’s iterative rounding method for covering problems [9], iterative
packing is able to leverage large fractional edges to obtain stronger approxima-
tion guarantees. As mentioned above, iterative packing produces and maintains
a sparse approximate convex decomposition rather than a single solution, which
is likely to have additional applications. We motivate the technique on the stan-
dard matching problem in the next section.

Our first result is a deterministic 2k-approximation for k-HDM (k-CS-CPIP)
based on the natural LP relaxation. The integrality gap of this relaxation is at
least 2(k−1+1/k) (see Sect. 3), hence our result essentially closes the gap. Prior
to our work, deterministic 8k-approximations [5, 1] and a randomized (ek+o(k))-
approximation [1] were the best known. Moreover, even the special case of k-
hypergraph matching cannot be approximated within a factor of Ω( k

log k ) unless
P=NP [8].

With a more refined application of iterative packing, we are able to derive a 3-
approximation for 2-CS-PIP, which generalizes the demand matching problem.
Prior to our work, a deterministic 3.5-approximation and randomized 3.264-
approximation for demand matching were given by Shepherd and Vetta [15].
Chakrabarty and Pritchard [14] recently gave a deterministic 4-approximation
and randomized 3.764-approximation for 2-CS-PIP. Shepherd and Vetta also
established a lower bound of 3 on the integrality gap of the natural LP for
demand matching, hence our result settles the integrality gap for both 2-CS-PIP
and demand matching at 3.

Related work. Chekuri, Mydlarz, and Shepherd [6] presented an approximation
algorithm with O(k) guarantee for the restricted version of k-HDM in which
maxS dS ≤ minv bv. Their result is part of a framework which they developed
based on work of Kolliopoulos and Stein [10] that relates the integrality gap of
a demand-endowed packing problem to its unit demand counterpart.

While Chekuri et al. [5] observed an 8k-approximation for k-HDM, a re-
cent flurry of work has also yielded O(k)-approximations for the more gen-
eral k-CS-PIP problem. Pritchard initiated the improvements with an itera-
tive rounding based 2kk2-approximation [13], which was improved to an O(k2)-
approximation by Chekuri, Ene, and Korula (see [14] and [1]) and Chakrabarty
and Pritchard [14]. Most recently, Bansal et al. [1] devised a deterministic 8k-
approximation and a randomized (ek + o(k))-approximation.
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Outline. In the following section we motivate iterative packing with an example.
In Sect. 3 we apply the method to design a 2k-approximation for k-HDM. We
finally present a more refined application in Sect. 4 to derive a 3-approximation
for 2-CS-PIP.

2 Iterative Packing: An Example

We illustrate iterative packing on the maximum matching problem. Although
this is a simple application, it serves well to illustrate the method. Consider the
natural degree-based LP relaxation PM (G) for the maximum matching problem
on a graph G = (V,E):

Maximize
∑
e∈E

cexe PM (G)

subject to
∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V (1)

0 ≤ xe ≤ 1 ∀e ∈ E. (2)

Given a feasible fractional solution x∗ ∈ PM (G), the iterative packing procedure
obtains an α-approximate convex decomposition of x∗,

αx∗ =
∑
i∈I

λiχ
i , (3)

for some α ∈ (0, 1], where each χi ∈ PM (G) is an integral solution (and
∑
i λi = 1

and λi ≥ 0 for all i). Iterative packing in its most basic form directly produces a
sparse decomposition, namely one with |I| ≤ |E|+ 1. Even when this is not the
case, we can apply elementary linear algebra to retain at most |E|+ 1 solutions
(more generally n+ 1, where x∗ ∈ IRn). A procedure to accomplish the latter is
related to Carathéodory’s Theorem and makes for a good exercise.

The construction of the decomposition (3) implies that one can find an inte-
gral solution with cost at least α(cx∗), thus 1/α corresponds to the approxima-
tion guarantee of the resulting approximation algorithm. A nice feature is that
the decomposition gives us a cost oblivious representation of an approximate
solution.

For PM (G), we first show that choosing α = 1/2 suffices. This yields a 2-
approximation while also showing that the integrality gap of PM (G) is at most
2. We then show that we may select α = 2/3 by leveraging the fact that extreme
points of PM (G) must contain an edge e with xe ≥ 1/2 (in fact this holds for all
e). The latter precisely matches the integrality gap of PM (G). This is interesting,
since much like iterative rounding, iterative packing offers insight into how large
fractional components can facilitate the approximation of packing problems.
Akin to iterative rounding, iterative packing is motivated by a simple idea. We
start with a fractional solution x∗ and:

1. Remove an edge e (without otherwise modifying the instance)
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2. Recursively obtain an α-approximate convex decomposition of the resulting
fractional solution, x̄∗

3. Pack e into precisely an αx∗e fraction of the integral solutions.

The key, of course, is showing that the last step can always be performed
successfully. For this to work, we require that for any fractional (or perhaps
extreme point) solution x∗ there exists an e ∈ E with∑

i∈Ie

λi ≥ αx∗e , (4)

where αx̄∗ =
∑
i∈I λiχ

i is an arbitrary approximate convex decomposition of
the residual solution, x̄∗, and i ∈ Ie indicates that χi is able to accommodate
the edge e (i.e. χi ∪ e is a matching).

Although we may well be able to pack e into a fraction of the integral solutions
that is larger than an αx∗e, to maintain our implicit inductive hypothesis we must
ensure that e is packed into exactly an αx∗e fraction of solutions. To accomplish
this, we may have to clone some solution χi, insert e into exactly one of the two
copies of χi, and distribute the multiplier λi among the copies so that e appears
in the requisite fraction of solutions. The base case, which contains no edges,
selects the empty solution with a multiplier of 1. Thus if (4) holds universally for
a particular value of α, then we can efficiently obtain an α-approximate convex
decomposition of x∗ consisting of at most |E| + 1 integral solutions. Selecting
the best of these gives us the corresponding approximation algorithm.

To see that (4) holds when α = 1/2, consider some fractional solution x∗ and
an arbitrary edge e = uv ∈ E with x∗e > 0. Obtaining x̄∗ as above by deleting e,
we have that

max{x̄∗(δ(u)), x̄∗(δ(v))} ≤ 1− x∗e ,

hence in any convex decomposition αx̄∗, at most a 2α(1− x∗e) fraction of the χi

do not accomodate e, hence we require 1−2α(1−x∗e) ≥ αx∗e, which is equivalent
to

α ≤ 1
2− x∗e

(5)

Thus by selecting α = 1/2, we may successfully pack any edge 0 ≤ x∗e ≤ 1
in the last step of our algorithm. However, by selecting a large edge at each
iteration we can improve the bound. It is well known that extreme points of
PM (G) are 1/2-integral, so we may actually take α = 1/(2 − 1/2) = 2/3. More
generally – just as with iterative rounding – it suffices to show that an extreme
point always contains some edge of large fractional value. We explore this idea
in conjunction with 2-CS-PIP in Sect. 4. However, in the next section we show
that the framework above with a simple modification yields a 2k-approximation
for k-HDM.

3 Iterative Packing for k-Hypergraph Demand Matching

The results in this section are obtained using the framework outlined for our the
matching problem in the previous section:
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1. Remove a (hyper)edge S (without otherwise modifying the instance)
2. Recursively obtain an α-approximate convex decomposition of the resulting

fractional solution, x̄∗
3. Pack e into precisely an αx∗S fraction of the integral solutions.

However, directly applying the algorithm above to k-HDM does not yield a
bounded approximation guarantee (w.r.t. k). We show that simply selecting an
edge S with minimal demand in step 1 above yields a 2k-approximation.

As with our analysis in the previous section, the crux lies in being able
to carry out step 3 successfully. Following the analysis in Sect. 2, let αx̄∗ =∑
i∈I µiχ

i be an arbitrary convex decomposition of the residual solution x̄∗

obtained in step 2. We may inductively assume the existence of such a decom-
position (with a trivial base case). To determine whether the edge S may be
packed in the requisite αx∗S fraction of the integral solutions χi, we consider the
potential fraction of solutions in which S is blocked at each u ∈ S. For u ∈ S,
let βu be the fraction of solutions in which S cannot be packed at u. We may
think of βu as the fraction of bad solutions in terms of packing S. In the worst
case, S is blocked pairwise disjointly at each incident vertex.

Lemma 1. Edge S may be packed into an αx∗S fraction of the integral solutions
χi, provided

1−
∑
u∈E

βu ≥ αx∗S .

Proof. The lemma follows from the same reasoning used to derive a union bound
if x∗ were a probability distribution. The quantity

∑
u∈S βu represents the max-

imum fraction of solutions in which S is blocked at some incident vertex, hence
1 −

∑
u∈S βu is the minimum fraction of solutions into which it is feasible to

insert S. ut

We may derive a 1/α-approximation guarantee on the performance of itera-
tive packing by bounding βu and selecting α so that Lemma 1 is satisfied. For
this purpose we find it useful to think of the residual convex decomposition,
αx̄∗ =

∑
i∈I µiχ

i, obtained in step 2. above, as inducing a collection of bins at
each u ∈ V where each bin has capacity bu. Each i ∈ I induces a bin of width
µi; the height hi is equal to the sum of the demands of the edges incident upon
u that appear in the solution χi; that is

hi :=
∑

S∈χi|u∈S

dS .

Thus the aggregate capacity of the bins is at most (
∑
i∈I µi)bu = bu, where each

bin contains a volume of µihi.
Next we bound the fraction of bad solutions at u. For this, we define δ̄ =

minT∈E|T 6=S dT , i.e. δ̄ is the minimal demand in the residual instance.

Lemma 2. For the convex decomposition, αx̄∗ =
∑
i∈I µiχ

i, we have

βu ≤ α
bu − dSx∗S

max{bu − dS + 1, δ̄}
.
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Proof. Let IS be the indices of the bins which cannot accommodate S. Thus by
definition,

βu =
∑
i∈IS

µi .

The total volume of all such bins is at most the total u-volume of αx̄, which
does not contain S: ∑

i∈IS

µihi ≤ α(bu − dSx∗S) .

Each bin in IS must have height large enough to block S and must also contain
at least one edge since S fits on its own, by the no clipping assumption. Thus
hi ≥ max{bu − dS + 1, δ̄}, yielding the desired result when coupled with the
above equation and inequality:

max{bu − dS + 1, δ̄}βu = max{bu − dS + 1, δ̄}
∑
i∈IS

µi ≤ α(bu − dSx∗S) .

ut

Unfortunately when dS is large and x∗S is small, the above bound may be
large. However, by appealing to special cases of k-HDM or by more carefully
selecting the edge S, the bound βu becomes manageable. For instance, consider
the case of the k-hypergraph b-matching problem, obtained when dS = 1 for all
S. In this case βu ≤ α by Lemma 2, which allows us to satisfy the hypothesis of
Lemma 1 by selecting α such that:

α ≤ 1
x∗S + k

⇒ αx∗S ≤ 1− kα ≤ 1−
∑
u∈E

βu . (6)

Since x∗S ≤ 1 for all E, we may universally select α = 1
k+1 for all S, yielding an

approximation guarantee of k + 1. Krysta [12] proved that a greedy algorithm
also achieves this bound, and Young and Koufogiannakis [11] give a primal dual
algorithm achieving a bound of k, which is the best known. Although we omit the
details in this article, iterative packing can be used to show that the integrality
gap of the natural LP relaxation for k-hypergraph b-matching is at most k−1 +
1/k, which settles the gap.

Turning our attention back to k-HDM, the “max” in Lemma 2’s bound hints
at our strategy: we shall always select an edge S with minimal demand, so that
δ̄ is large enough to be of value. In fact the resulting approximation algorithm
applies to a generalization of k-HDM (k-CS-CPIP) in which we allow each edge
S to have a different valued demand, dSv at each vertex v, as is allowed in k-
CS-PIP. However, we require that the edges can be ordered, S1, S2, . . . , Sm, so
that for any distinct Si, Sj with u ∈ Si ∩ Sj , we have dSi

u ≤ d
Sj
u if i ≤ j; that

is, the demands monotonically increase at every vertex. Note that this is clearly
the case with k-HDM, where dS = dSu = dSv for all u, v ∈ S. We may simply sort
the demands over the edges to obtain such an ordering. We perform iterative
packing with such an ordering (i.e. select an S with minimal demand). Now
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when we insert S back into the approximate convex decomposition of αx̄, we
may assume that dS ≤ δ̄.

Theorem 1. Iterative packing applied to k-CS CPIP with the edges inserted in
order of nonincreasing demand is a 2k-approximation.

Proof. To simplify our analysis, we conduct it in terms of 1/α. The stipulation
of Lemma 1 may be expressed as:

x∗S +
∑
u∈S

βu
α
≤ 1
α
.

Our goal is to show that the above holds when 1/α = 2k. By applying the bound
on βu from Lemma 2, we reduce our task to showing that

x∗S +
∑
u∈S

bu − dSx∗S
max{bu − dS + 1, δ̄}

≤ 2k ,

for any value of x∗S ∈ [0, 1]. Note that when the left hand side above is considered
as a function of the parameters bu, dS , and x∗S , it is linear in x∗S . Thus it is
maximized in one of the cases x∗S = 0 or x∗S = 1. When x∗S = 1 we indeed have

1 +
∑
u∈S

bu − dS
max{bu − dS + 1, δ̄}

≤ 1 +
∑
u∈S

bu − dS
bu − dS + 1

≤ 1 + k ≤ 2k .

On the other hand when x∗S = 0, we have

0 +
∑
u∈S

bu
max{bu − dS + 1, δ̄}

≤ 2
∑
u∈S

bu
bu + δ̄ − dS + 1

≤ 2k ,

where the former inequality follows because max{x, y} ≥ (x + y)/2, and the
latter holds because our ordering of the edges gives us δ̄ ≥ dS . ut

Integrality gap. Our result essentially settles the integrality gap of the natural
formulation. As noted in [7] the projective plane of order k−1 yields an integrality
gap of at least k − 1 + 1/k, even for the case of k-hypergraph matching. For k-
HDM (and consequently k-CS PIP) one may obtain a lower bound approaching
2(k− 1 + 1/k) by again considering a projective plane of order k− 1, setting all
the demands to d and each capacity to b = 2d− 1.

4 Improvements for 2-CS-PIP and Demand Matching

Here we consider the general k-CS-PIP rather than k-HDM/k-CS-CPIP, but
for the special case k = 2. This case is of particular interest as it is natural
generalization of the demand matching problem (i.e. 2-CS-CPIP), which itself is
combination of both b-matching and knapsack type problems in graphs.
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Shepherd and Vetta [15] were able to show that integrality gap of the nat-
ural LP formulation was between 3 and 3.264; however, establishing the exact
value has remained an open problem prior to our work. We are able to show
that there is indeed a 3-approximation based on the natural LP for not only de-
mand matching but also the more general 2-CS-PIP problem. This consequently
settles the integrality gaps for both problems. Although designing a polynomial
time algorithm takes a bit of work, iterative packing allows us to establish the
integrality gap relatively easily.

4.1 Establishing the Integrality Gap

As observed in the introduction for the standard matching problem, iterative
packing readily yields an upper bound of 2 on the integrality gap of the natural
formulation, which is sharpened to the optimal value of 3/2 (= k − 1 + 1/k) by
observing that extreme points must contain some large component (xe ≥ 1/2)
and iterating only on such edges. For 2-CS PIP we also apply iterative packing
solely on large components in extreme points – in fact, those with xe = 1 when
they exist.

An interesting phenomenon with general demand packing problems is that
1-edges (i.e. xe = 1) cannot simply swept under the rug as with {0, 1}-demand
problems. For the latter, one can simply assume such edges are selected in a
solution and obtain a straightforward residual instance and feasible fractional
solution. With general demand problems, however, such an approach may violate
the no clipping assumption. Iterative packing, on the other hand, performs quite
well on 1-edges, which allows us to rather easily prove an optimal integrality
gap. Although we will also derive this result in the next section by means of
a polynomial time algorithm, in this section we attack only the integrality gap
with a short proof that highlights the effectiveness of iterative packing when
augmented with simple insights about the nature of extreme points. Our first task
is to show that extreme points without 1-edges admit a manageable structure.
We note that since our discussion involves the more general 2-CS-PIP rather
than demand matching, each edge uv may have distinct demands duvu and duvv .

Lemma 3. If x̂ is an extreme point of the natural LP then the fractional part of
x̂ induces connected components with at most one cycle. If we have 0 < x̂ < 1,
then x̂ induces vertex disjoint cycles.

Proof. Let F ⊆ E be the fractional support of x̂. For each connected component
C induced by F , the only tight constraint in which e ∈ F (C) may appear are
degree constraints,

∀u ∈ V :
∑

uv∈δ(u)

duvu xuv ≤ bu ,

for u ∈ V (C). Thus |F (C)| ≤ |V (C)|, otherwise we would find that a basis for x̂
contains linearly dependent columns among those of F (C). This establishes the
first claim of the lemma.
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If 0 < x̂ < 1, then no component induced by x̂ may contain an edge e incident
to a leaf l, otherwise we would have del x̂e = bl, implying x̂e = 1 by the no clipping
assumption. Thus we must have |F (C)| = |V (C)| for each component C, and
since we have no leaves, C must be a cycle. ut

Coupled with our earlier analysis of iterative packing, this is the only fact
we need to establish the integrality gap of 3. Consider the following non-efficient
extension of iterative packing:

1. If x∗ is not an extreme point, obtain a convex decomposition into extreme
points, x∗ =

∑
i µix̂

i, and apply the algorithm to each extreme point x̂i.
2. If the extreme point x̂ contains an integral edge let e be such an edge,

otherwise let e be any edge.
3. Delete e to obtain x̄ and recursively construct an approximate convex de-

composition into integral solutions, 1
3 x̄ =

∑
j λjχ

j .
4. Insert e into exactly a 1

3xe fraction of the solutions χj .

Lemma 4. Step 4. above can always be completed successfully.

Proof. Suppose there is an integral x̂e and that x̂e = 1 (x̂e = 0 clearly works).
Substituting x̂e = 1 into the bound from Lemma 2 yields βu ≤ α for u ∈ e, which
we have already observed (see (6)) allows us to select α = 1/(k + 1) = 1/3. On
the other hand, if there is no integral edge by Lemma 3, x̂ induces a 2-regular
graph. When we delete e in this case, at each endpoint u ∈ e there is a single
edge, fu remaining. Thus βu ≤ αx̂fu

≤ α in this case as well. ut

We have a lower bound on the integrality gap of 2(k− 1 + 1/k) = 3 from the
previous section. To complete our proof, we note that by assuming an approx-
imate convex decomposition for each extreme point, 1

3 x̂
i =

∑
j λjχ

ij , we may
obtain a decomposition for 1

3x
∗ as

∑
i

∑
j µiλjχ

ij .

Theorem 2. The integrality gap of the natural LP formulation for 2-CS PIP is
3.

4.2 A Polynomial Time Implementation

Unfortunately we do not currently have a means of directly implementing the al-
gorithm above in polynomial time; however, Shepherd and Vetta [15] analyze the
fractional structure of extreme points of the natural LP for demand matching.
We are able to develop a polynomial time algorithm by relying on generaliza-
tions of their demand matching insights. A key ingredient used by Shepherd and
Vetta is the augmentation of a fractional path (Sect. 4.1 in [15]). We begin by
giving a generalization of this tool for the case of 2-CS PIP.

Lemma 5. Let P = (v0, e1, v1, e2, . . . , vk) be a path; there exists an augmenta-
tion vector z ∈ IRE such that

1.
∑
uv∈δ(u) d

uv
u zuv 6= 0, for u = v0, vk
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2.
∑
uv∈δ(u) d

uv
u zuv = 0, for all other u ∈ V

Proof. We set ze = 0 for all e /∈ E(P ), and we set ze1 = 1. We now set the value
of zei+1 , for i ≥ 1, based on the value of zei

as follows:

zei+1 = −(dei
vi
/dei+1
vi

)zei
.

The first condition is satisfied since zei
6= 0⇒ zei+1 6= 0, and the second condi-

tion holds since dei+1
vi zei+1 = −dei

vi
zei

. ut

Algorithm. We will explain the utility of the above lemma in just a moment;
however, first we give an overview of our algorithm:

1. Find an extreme point x̂ of the natural 2-CS PIP LP.
2. Delete any 0-edges and iterate on the 1-edges until a complete fractional

solution x̄ remains.
3. We will show that x̄ possesses a structure that allows us to infer a 3-

approximation algorithm based on a result of Shepherd and Vetta.
4. Apply a result of Carr and Vempala [3] with the above 3-approximation

algorithm as an approximate separation oracle to obtain an approximate
convex decomposition of x̄ in polynomial time.

5. Pack the removed 1-edges into 1/3 of the solutions from the above decom-
position.

The basic idea is to use a more complex base case for iterative packing, rather
than the default case of an empty graph. In the above algorithm steps 3 and 4
represent the base case. We address the results employed in these steps in turn.

Analysis. First we describe the 3-approximation derived from Shepherd and
Vetta’s work. Note that in step 3, we have a solution x̄ that contains precisely
the fractional components of an extreme point x̂. By Lemma 3, each component
induced by x̄ is either a tree or unicyclic. For the former case, we can apply
a generalization of Thereom 4.1 from Shepherd and Vetta [15], which yields a
2-approximation with respect to a fractional solution x∗ whose support is a tree.
They use path augmentations to derive this result for demand matching, for
which we give an appropriate generalization in Lemma 5.

A 3-approximation. We briefly explain the basic idea behind the 2-approximation
mentioned above and recommend the reader consult Sect. 4.1 in [15] for a rig-
orous proof. Since x∗ induces a tree, we can find a path P between two leaves s
and t. We apply Lemma 5 on P to obtain z; we are able to select an ε 6= 0 such
that:

– x∗ + εz earns cost at least that of x∗

– x∗ + εz is still feasible at every vertex except possibly s and t
– x∗ + εz has some integral edge
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Thus we obtain a new solution of no worse cost, but it may be infeasible at s and
t. We temporarily remove any integral edges to obtain smaller trees and continue
the procedure to obtain a collection of integral edges that are not necessarily
feasible but are of superoptimal cost. The key observation is that when a vertex
becomes infeasible, it is a leaf, which allows Shepherd and Vetta to conclude
in the final solution, at every vertex there is at most one edge whose removal
results in a feasible solution. Since the edges form a forest, Shepherd and Vetta
are able to partition the edges into two sets such that each is feasible, yielding
a 2-approximation.

Returning to our algorithm, each component of x̂ contains at most one cycle,
thus for a given cost function, we may delete the cheapest edge from each such
cycle to retain a solution of cost at least 2/3 that of x̂. This leaves a forest on
which we apply Shepherd and Vetta’s procedure to obtain an integral solution
of cost at least 1/3 = 1/2 · 2/3 that of x̂. The trouble is that although this gives
a 3-approximation, we actually need a convex decomposition of 1/3x̂ in order to
pack the 1-edges removed in the second step. Luckily, we are able to appeal to
the following result Carr and Vempala [3] to obtain such a decmoposition.

Theorem 3. (Thm 2, [3]) Given an LP relaxation P, an r-approximation heuris-
tic A, and any solution x∗ of P, there is a polytime algorithm that finds a poly-
nomial number of integral solutions z1, z2, . . . of P such that

1
r
x∗ ≤

∑
j

λjχ
zj

where λj ≥ 0 for all j, and
∑
j λj = 1.

The theorem from Carr and Vempala is for covering problems; however, their
ideas yield the result for the packing case as well. We also note that the heuristic
A must be an r-approximation with respect to the lower bound given by the
relaxation P .

Obtaining an exact decomposition. The only remaining detail is that for
our purposes, we require an exact decomposition of x∗/r (i.e. x∗/r =

∑
j λjχ

zj

).
We observe that this can be done by at most doubling the number integral
solutions zj . For any edge e such that x∗e/r >

∑
j λjχ

zj

e , we remove e from
solutions that contain e. We continue this until removing e from any solution
would give us x∗e/r ≤

∑
j λjχ

zj

e . Now we clone some solution zj that contains
e and remove e from the clone; we distribute λj between these two solutions to
attain x∗e/r =

∑
j λjχ

zj

e . Finally, Lemma 4 shows that step 5. may be completed.
Carr and Vempala’s result is essentially an application of LP duality and

the polynomial time equivalence of separation and optimization. It certainly
seems likely that a more direct analysis of 1/3x̂ could be used to construct a
convex decomposition; however, we are enamored with the elegance of Carr and
Vempala’s result.
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5 Concluding Remarks

We have obtained simple iterative packing algorithms for k-hypergraph demand
matching problems that essentially settle the gap of the respective natural LP
relaxations. Obvious open questions include generalizing our work to k-CS-PIP.
We are currently investigating this and have derived promising partial results.
It is conceivable that one may also develop an analogue of iterative packing for
covering that appeals to approximate convex decompositions.
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